Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.208
Filtrar
1.
Oncol Res ; 32(5): 899-910, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686047

RESUMEN

Osteosarcoma is a very serious primary bone cancer with a high death rate and a dismal prognosis. Since there is no permanent therapy for this condition, it is necessary to develop a cure. Therefore, this investigation was carried out to assess the impacts and biological functions of hydroxysafflor yellow A (HYSA) in osteosarcoma cell lines (MG63). In this investigational study, MG63 cells were utilized. Microarray experiments, quantitative polymerase chain reaction (qPCR), immunofluorescent staining, extracellular acidification rate (ECAR), oxygen consumption rate (OCR), glucose consumption, lactate production, and ATP levels, proliferation assay, 5-Ethynyl-2'-deoxyuridine (EDU) staining, and Western blot were performed. In MG63 cells, HYSA lowered cell proliferation and metastasis rates, suppressed EDU cell number, and enhanced caspase-3/9 activity levels. HYSA reduced the Warburg effect and induced ferroptosis (FPT) in MG63 cells. Inhibiting ferroptosis diminished HYSA's anti-cancer activities in MG63 cells. The stimulation of the HIF-1α/SLC7A11 pathway decreased HYSA's anti-cancer activities in MG63 cells. HIF-1α is one target spot for HYSA in a model of osteosarcoma cancer (OC). HYSA altered HIF-1α's thermophoretic activity; following binding with HYSA, HIF-1α's melting point increased from ~55°C to ~60°C. HYSA significantly enhanced the thermal stability of exogenous WT HIF-1α while not affecting Mut HIF-1α, suggesting that ARG-311, GLY-312, GLN-347, and GLN-387 may be involved in the interaction between HIF-1α and HYSA. Conclusively, our study revealed that HYSA induced FPT and reduced the Warburg effect of OC through mitochondrial damage by HIF-1α/HK2/SLC7A11 pathway. HYSA is a possible therapeutic option for OC or other cancers.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Neoplasias Óseas , Proliferación Celular , Chalcona , Chalcona/análogos & derivados , Ferroptosis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Osteosarcoma , Quinonas , Humanos , Osteosarcoma/metabolismo , Osteosarcoma/patología , Osteosarcoma/tratamiento farmacológico , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Chalcona/farmacología , Línea Celular Tumoral , Ferroptosis/efectos de los fármacos , Quinonas/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
2.
Chem Biodivers ; 21(4): e202301820, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38372508

RESUMEN

As a part of novel discovery of drugs from natural resources, present study was undertaken to explore the antibacterial potential of chalcone Indl-2 in combination with different group of antibiotics. MIC of antibiotics was reduced up to eight folds against the different cultures of E. coli by both chalcones. Among the two compounds, the i. e. 1-(3', 4,'5'-trimethoxyphenyl)-3-(3-Indyl)-prop-2-enone (6, Indl-2), a chalcone derivative of gallic acid (Indl-2) was better along with tetracycline (TET) worked synergistically and was found to inhibit efflux transporters as obvious by ethidium bromide efflux confirmed by ATPase assays and docking studies. In combination, Indl-2 kills the MDREC-KG4 cells, post-antibiotic effect (PAE) of TET was prolonged and mutant prevention concentration (MPC) of TET was also decreased. In-vivo studies revealed that Indl-2 reduces the concentration of TNF-α. In acute oral toxicity study, Indl-2 was non-toxic and well tolerated up-to dose of 2000 mg/kg. Perhaps, the study is going to report gallic acid derived chalcone as synergistic agent acting via inhibiting the primary efflux pumps.


Asunto(s)
Chalcona , Chalconas , Chalcona/farmacología , Chalconas/farmacología , Escherichia coli , Ácido Gálico/farmacología , Antibacterianos/farmacología , Tetraciclina/farmacología , Proteínas de Transporte de Membrana , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/metabolismo
3.
J Microbiol ; 62(2): 75-89, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38383881

RESUMEN

The emergence of carbapenem-resistant Pseudomonas aeruginosa, a multi-drug-resistant bacteria, is becoming a serious public health concern. This bacterium infects immunocompromised patients and has a high fatality rate. Both naturally and synthetically produced chalcones are known to have a wide array of biological activities. The antibacterial properties of synthetically produced chalcone were studied against P. aeruginosa. In vitro, study of the compound (chalcone derivative named DKO1), also known as (2E)-1-(5-methylfuran-2-yl)-3-(4-nitrophenyl) prop-2-en-1-one, had substantial antibacterial and biofilm disruptive action. DKO1 effectively shielded against P. aeruginosa-induced inflammation, oxidative stress, lipid peroxidation, and apoptosis in zebrafish larvae. In adult zebrafish, the treatment enhanced the chances of survivability and reduced the sickness-like behaviors. Gene expression, biochemical analysis, and histopathology studies found that proinflammatory cytokines (TNF-α, IL-1ß, IL-6, iNOS) were down regulated; antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) levels increased, and histoarchitecture was restored in zebrafish. The data indicate that DKO1 is an effective antibacterial agent against P. aeruginosa demonstrated both in vitro and in vivo.


Asunto(s)
Chalcona , Chalconas , Adulto , Animales , Humanos , Pez Cebra , Pseudomonas aeruginosa/metabolismo , Chalcona/metabolismo , Chalcona/farmacología , Chalconas/metabolismo , Chalconas/farmacología , Antibacterianos/farmacología , Antibacterianos/metabolismo , Bacterias , Pruebas de Sensibilidad Microbiana
4.
Drug Des Devel Ther ; 18: 475-491, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38405578

RESUMEN

Purpose: The underlying causes of pulmonary arterial hypertension (PAH) often remain obscure. Addressing PAH with effective treatments presents a formidable challenge. Studies have shown that Hydroxysafflor yellow A (HSYA) has a potential role in PAH, While the mechanism underlies its protective role is still unclear. The study was conducted to investigate the potential mechanisms of the protective effects of HSYA. Methods: Using databases such as PharmMapper and GeneCards, we identified active components of HSYA and associated PAH targets, pinpointed intersecting genes, and constructed a protein-protein interaction (PPI) network. Core targets were singled out using Cytoscape for the development of a model illustrating drug-component-target-disease interactions. Intersection targets underwent analysis for Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Selected components were then modeled for target interaction using Autodock and Pymol. In vivo validation in a monocrotaline-induced PAH (MCT-PAH) animal model was utilized to substantiate the predictions made by network pharmacology. Results: We associated HSYA with 113 targets, and PAH with 1737 targets, identifying 34 mutual targets for treatment by HSYA. HSYA predominantly affects 9 core targets. Molecular docking unveiled hydrogen bond interactions between HSYA and several PAH-related proteins such as ANXA5, EGFR, SRC, PPARG, PGR, and ESR1. Conclusion: Utilizing network pharmacology and molecular docking approaches, we investigated potential targets and relevant human disease pathways implicating HSYA in PAH therapy, such as the chemical carcinogenesis receptor activation pathway and the cancer pathway. Our findings were corroborated by the efficacious use of HSYA in an MCT-induced rat PAH model, confirming its therapeutic potential.


Asunto(s)
Chalcona , Chalcona/análogos & derivados , Medicamentos Herbarios Chinos , Hipertensión Arterial Pulmonar , Quinonas , Humanos , Animales , Ratas , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Remodelación Vascular , Simulación del Acoplamiento Molecular , Chalcona/farmacología
5.
Biomolecules ; 14(2)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38397453

RESUMEN

The purpose of the current investigation was to produce cinammaldehyde-based chalcone derivatives (3a-k) to evaluate their potential effectiveness as antioxidant and inhibitory agents versus human Caco-2 cancer cells. The findings obtained using the DPPH assay showed that compound 3e had the highest effective antioxidant activity with the best IC50 value compared with the other compounds. Moreover, the cytotoxic findings revealed that compound 3e was the best compound for inhibiting Caco-2 development in contrast to all other produced derivatives, with the lowest IC50 concentration (32.19 ± 3.92 µM), and it also had no detrimental effects on healthy human lung cells (wi38 cells). Exposure of Caco-2 cells with this IC50 value of compound 3e resulted in a substantial rise in the number of early and late cells that are apoptotic with a significant comet nucleus when compared with control cells employing the annexin V/PI and comet evaluations, respectively. Furthermore, qRT-PCR and ELISA examinations indicated that compound 3e significantly altered the expression of genes and their relative proteins related to apoptosis in the treated Caco-2 cells, thus significantly inhibiting Caco-2 growth through activating Caspase-3 via an intrinsic apoptotic pathway. As a result, compound 3e could serve as an effective therapy for human colon cancer.


Asunto(s)
Acroleína/análogos & derivados , Antineoplásicos , Chalcona , Chalconas , Neoplasias del Colon , Humanos , Relación Estructura-Actividad , Antioxidantes/farmacología , Chalconas/farmacología , Línea Celular Tumoral , Células CACO-2 , Chalcona/farmacología , Chalcona/química , Proliferación Celular , Antineoplásicos/química , Neoplasias del Colon/tratamiento farmacológico , Apoptosis , Estructura Molecular
6.
Arch Pharm (Weinheim) ; 357(5): e2300626, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38297894

RESUMEN

Two new series of quinazoline-chalcone hybrids were designed, synthesized as histone deacetylase (HDAC)/epidermal growth factor receptor (EGFR) dual inhibitors, and screened in vitro against the NCI 60 human cancer cell line panel. The most potent derivative, compound 5e bearing a 3,4,5-trimethoxyphenyl chalcone moiety, showed the most effective growth inhibition value against the panel of NCI 60 human cancer cell lines. Thus, it was selected for further investigation for NCI 5 log doses. Interestingly, this trimethoxy-substituted analog inhibited the proliferation of Roswell Park Memorial Institute (RPMI)-8226 cells by 96%, at 10 µM with IC50 = 9.09 ± 0.34 µM and selectivity index = 7.19 against normal blood cells. To confirm the selectivity of this compound, it was evaluated against a panel of tyrosine kinase enzymes. Mechanistically, it successfully and selectively inhibited HDAC6, HDAC8, and EGFR with IC50 = 0.41 ± 0.015, 0.61 ± 0.027, and 0.09 ± 0.004 µM, respectively. Furthermore, the selected derivative induced apoptosis via the mitochondrial apoptotic pathway by raising the Bax/Bcl-2 ratio and activating caspases 3, 7, and 9. Also, the flow cytometry analysis of RPMI-8226 cells showed that the trimethoxy-substituted analog produced cell cycle arrest in the G1 and S phases at 55.82%. Finally, an in silico study was performed to explore the binding interaction of the most active compound within the zinc-containing binding site of HDAC6 and HDAC8.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Chalconas , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB , Inhibidores de Histona Desacetilasas , Quinazolinas , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Quinazolinas/farmacología , Quinazolinas/síntesis química , Quinazolinas/química , Relación Estructura-Actividad , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Chalconas/farmacología , Chalconas/síntesis química , Chalconas/química , Estructura Molecular , Relación Dosis-Respuesta a Droga , Simulación del Acoplamiento Molecular , Histona Desacetilasas/metabolismo , Chalcona/farmacología , Chalcona/química , Chalcona/síntesis química
7.
J Inorg Biochem ; 252: 112481, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38215536

RESUMEN

A bis(chalcone) molecule (H2L) was synthesized via Aldol's condensation from terephthalaldehyde and 2'-hydroxyacetophenone and it was used as bridging ligand for the preparation of five dinuclear copper(II) complexes of the composition [Cu(NN)(µ-L)Cu(NN)](NO3)2⋅nH2O (n = 0-2) (1-5), where NN stands for a bidentate N-donor ligand such as phen (1,10-phenanthroline, 1), bpy (2,2'-bipyridine, 2), mebpy (5,5'-dimethyl-2,2'-dipyridine, 3), bphen (bathophenanthroline, 4) and nphen (5-nitro-1,10-phenanthroline, 5). The compounds were characterized by different suitable techniques to confirm their purity, composition, and structure. Moreover, the products were evaluated for their in vitro cytotoxicity on a panel of human cancer cell lines: ovarian (A2780), ovarian resistant to cisplatin (A2780R), prostate (PC3), osteosarcoma (HOS), breast (MCF7) and lung (A549), and normal fibroblasts (MRC-5), showing significant cytotoxicity in most cases, with IC50 ≈ 0.35-7.8 µM. Additionally, the time-dependent cytotoxicity and cellular uptake of copper, together with flow cytometric studies concerning cell-cycle arrest, induction of cell death and autophagy and induction of intracellular ROS/superoxide production in A2780 cells, were also performed. The results of biological testing on A2780 cells pointed out a possible mechanism of action characterized by the G2/M cell cycle arrest and induction of apoptosis by triggering the intrinsic signalling pathway associated with the damage of mitochondrial structure and depletion of mitochondrial membrane potential. SYNOPSIS: Dinuclear Cu(II) complexes bearing a bridging bis(chalcone) ligand revealed high in vitro cytotoxicity, initiated A2780 cell arrest at G2/M phase and efficiently triggered intrinsic pathway of apoptosis.


Asunto(s)
Antineoplásicos , Chalcona , Chalconas , Complejos de Coordinación , Neoplasias Ováricas , Humanos , Femenino , Cobre/química , Chalconas/farmacología , Línea Celular Tumoral , Ligandos , Chalcona/farmacología , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis
8.
Mol Nutr Food Res ; 68(5): e2300538, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38267744

RESUMEN

SCOPE: Stimulation of glucose uptake in the skeletal muscle is crucial for the prevention of postprandial hyperglycemia. Insulin and certain polyphenols enhance glucose uptake through the translocation of glucose transporter 4 (GLUT4) in the skeletal muscle. The previous study reports that prenylated chalcones, 4-hydroxyderricin (4-HD), and xanthoangelol (XAG) promote glucose uptake and GLUT4 translocation in L6 myotubes, but their underlying molecular mechanism remains unclear. This study investigates the mechanism in L6 myotubes and confirms antihyperglycemia by 4-HD and XAG. METHODS AND RESULTS: In L6 myotubes, 4-HD and XAG promote glucose uptake and GLUT4 translocation through the activation of adenosine monophosphate-activated protein kinase (AMPK) and liver kinase B1 (LKB1) signaling pathway without activating phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and Janus kinases (JAKs)/signal transducers and activators of transcriptions (STATs) pathways. Moreover, Compound C, an AMPK-specific inhibitor, as well as siRNA targeting AMPK and LKB1 completely canceled 4-HD and XAG-increased glucose uptake. Consistently, oral administration of 4-HD and XAG to male ICR mice suppresses acute hyperglycemia in an oral glucose tolerance test. CONCLUSION: In conclusion, LKB1/AMPK pathway and subsequent GLUT4 translocation in skeletal muscle cells are involved in Ashitaba chalcone-suppressed acute hyperglycemia.


Asunto(s)
Chalcona , Chalcona/análogos & derivados , Chalconas , Hiperglucemia , Ratones , Animales , Masculino , Chalcona/farmacología , Chalcona/metabolismo , Chalconas/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Endogámicos ICR , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Fibras Musculares Esqueléticas/metabolismo , Hiperglucemia/prevención & control , Hiperglucemia/metabolismo , Músculo Esquelético/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo
9.
Arch Pharm (Weinheim) ; 357(5): e2300640, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38227398

RESUMEN

Breast cancer, an epithelial malignant tumor that occurs in the terminal ducts of the breast, is the most common female malignancy. Currently, approximately 70%-80% of breast cancer with early-stage, nonmetastatic disorder is curable, but the emergency of drug resistance often leads to treatment failure. Moreover, advanced breast cancer with distant organ metastases is incurable with the available therapeutics, creating an urgent demand to explore novel antibreast cancer agents. Chalcones, the precursors for flavonoids and isoflavonoids, exhibit promising activity against various breast cancer hallmarks, inclusive of proliferation, angiogenesis, invasion, metastasis, inflammation, stemness, and regulation of cancer epigenetics, representing useful scaffolds for the discovery of novel antibreast cancer chemotherapeutic candidates. In particular, chalcone hybrids could act on two or more different biological targets simultaneously with more efficacy, lower toxicity, and less susceptibility to resistance. Accordingly, there is a huge scope for application of chalcone hybrids to tackle the present difficulties in breast cancer therapy. This review outlines the chalcone hybrids with antibreast cancer potential developed from 2018. The structure-activity relationships as well as mechanisms of action are also discussed to shed light on the development of more effective and multitargeted chalcone candidates.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Chalconas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Relación Estructura-Actividad , Chalconas/farmacología , Chalconas/química , Chalcona/farmacología , Chalcona/química , Animales , Proliferación Celular/efectos de los fármacos , Estructura Molecular
10.
J Biomol Struct Dyn ; 42(3): 1381-1391, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37071766

RESUMEN

Four new hybrid compounds (H1-H4) bearing pyrazole (S1 and S2) and chalcone (P1 and P2) fragments were synthesized and characterized. Compounds were assayed for their ability to inhibit the proliferation of human lung (A549) and colon (Caco-2) cancer cell lines. Besides, toxicity against normal cells was determined using the human umbilical vein endothelial cells (HUVEC). In silico molecular docking, molecular dynamics (MD) simulation and absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies were carried out to predict the binding modes, protein stability, drug-likeness and toxicity of the reported compounds. The in vitro anticancer activity of the tested compounds revealed dose-dependent cell-specific cytotoxicity. In silico studies revealed that the compounds have a good binding affinity, possess appropriate drug-likeness properties and have low toxicity profiles.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antineoplásicos , Chalcona , Chalconas , Humanos , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Chalconas/farmacología , Línea Celular Tumoral , Chalcona/farmacología , Células CACO-2 , Células Endoteliales , Antineoplásicos/química , Diseño de Fármacos , Proliferación Celular , Pirazoles/farmacología , Pirazoles/química
11.
Fitoterapia ; 172: 105739, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37952763

RESUMEN

In this study, 30 chalcone derivatives containing [1,2,4]-triazole-[4,3-a]-pyridine were designed and synthesized. The results of antibacterial activity showed that EC50 values of N26 against Xoo, Pcb was 36.41, 38.53 µg/mL, respectively, which were better than those of thiodiazole copper, whose EC50 values were 60.62, 106.75 µg/mL, respectively. The bacterial inhibitory activity of N26 against Xoo was verified by SEM. Antibacterial mechanism between N26 and Xoo was preliminarily explored, the experimental results showed that when the drug concentration was 100 mg/L, N26 had a good cell membrane permeability of Xoo, and it can inhibit the production of EPS content and extracellular enzyme content to disrupt the integrity of the Xoo biofilms achieving the effect of inhibiting Xoo. At 200 mg/L, N26 can protect and inhibit the lesions of post-harvested potatoes in vivo. The activities of N1-N30 against TMV were determined with half leaf dry spot method. The EC50 values of the curative and protective activity of N22 was 77.64 and 81.55 µg/mL, respectively, which were superior to those of NNM (294.27, 175.88 µg/mL, respectively). MST experiments demonstrated that N22 (Kd = 0.0076 ± 0.0007 µmol/L) had a stronger binding ability with TMV-CP, which was much higher than that of NNM (Kd = 0.7372 ± 0.2138 µmol/L). Molecular docking results showed that N22 had a significantly higher affinity with TMV-CP than NNM.


Asunto(s)
Chalcona , Chalconas , Oryza , Xanthomonas , Chalcona/farmacología , Chalconas/farmacología , Estructura Molecular , Simulación del Acoplamiento Molecular , Triazoles/farmacología , Pruebas de Sensibilidad Microbiana , Piridinas/farmacología , Antibacterianos/farmacología , Enfermedades de las Plantas , Oryza/microbiología , Relación Estructura-Actividad , Diseño de Fármacos
12.
J Biomol Struct Dyn ; 42(4): 1670-1691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37222682

RESUMEN

Chalcones have an open chain flavonoid structure that can be obtained from natural sources or by synthesis and are widely distributed in fruits, vegetables, and tea. They have a simple and easy to handle structure due to the α-ß-unsaturated bridge responsible for most biological activities. The facility to synthesize chalcones combined with its efficient in combating serious bacterial infections make these compounds important agents in the fight against microorganisms. In this work, the chalcone (E)-1-(4-aminophenyl)-3-(4-nitrophenyl)prop-2-en-1-one (HDZPNB) was characterized by spectroscopy and electronic methods. In addition, microbiological tests were performed to investigate the modulator potential and efflux pump inhibition on S. aureus multi-resistant strains. The modulating effect of HDZPNB chalcone in association with the antibiotic norfloxacin, on the resistance of the S. aureus 1199 strain, resulted in increase the MIC. In addition, when HDZPNB was associated with ethidium bromide (EB), it caused an increase in the MIC value, thus not inhibiting the efflux pump. For the strain of S. aureus 1199B, carrying the NorA pump, the HDZPNB associated with norfloxacin showed no modulatory, and when the chalcone was used in association with EB, it had no inhibitory effect on the efflux pump. For the tested strain of S. aureus K2068, which carries the MepA pump, it can be observed that the chalcone together the antibiotic resulted in an increase the MIC. On the other hand, when chalcone was used in association with EB, it caused a decrease in bromide MIC, equal to the reduction caused by standard inhibitors. Thus, these results indicate that the HDZPNB could also act as an inhibitor of the S. aureus gene overexpressing pump MepA. The molecular docking reveals that chalcone has a good binding energies -7.9 for HDZPNB/MepA complexes, molecular dynamics simulations showed that Chalcone/MetA complexes showed good stability of the structure in an aqueous solution, and ADMET study showed that the chalcone has a good oral bioavailability, high passive permeability, low risk of efflux, low clearance rate and low toxic risk by ingestion. The microbiological tests show that the chalcone can be used as a possible inhibitor of the Mep A efflux pump.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Chalcona , Chalconas , Nitrofenoles , Antibacterianos/química , Staphylococcus aureus , Norfloxacino/farmacología , Norfloxacino/metabolismo , Simulación del Acoplamiento Molecular , Chalcona/farmacología , Chalconas/farmacología , Pruebas de Sensibilidad Microbiana , Etidio/metabolismo , Proteínas Bacterianas/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos
13.
Mini Rev Med Chem ; 24(2): 176-195, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37497710

RESUMEN

Chalcones are flavonoid-related aromatic ketones and enones generated from plants. The chalcones have a wide range of biological activities, such as anti-tumor, calming, and antimicrobial activities. In the present review, we have focused on the recently published original research articles on chalcones as a unique antibacterial framework in medicinal chemistry. Chalcones are structurally diverse moieties and can be split into simple and hybrid chalcones, with both having core pharmacophore 1,3-diaryl-2-propen-1-one. Chalcones are isolated from natural sources and also synthesized by using various methods. Their structure-activity relationship, mechanisms, and list of patents are also summarized in this paper. This review article outlines the currently published antimicrobial chalcone hybrids and suggests that chalcone derivatives may be potential antimicrobial agents in the future.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Chalcona , Chalconas , Chalcona/farmacología , Chalconas/farmacología , Química Farmacéutica , Antiinfecciosos/farmacología , Relación Estructura-Actividad , Antineoplásicos/farmacología
14.
Fundam Clin Pharmacol ; 38(1): 60-71, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37497790

RESUMEN

BACKGROUND: The bacterium Staphylococcus aureus has stood out for presenting a high adaptability, acquiring resistance to multiple drugs. The search for natural or synthetic compounds with antibacterial properties capable of reversing the resistance of S. aureus is the main challenge to be overcome today. Natural products such as chalcones are substances present in the secondary metabolism of plants, presenting important biological activities such as antitumor, antidiabetic, and antimicrobial activity. OBJECTIVES: In this context, the aim of this work was to synthesize the chalcone (2E)-1-(3'-aminophenyl)-3-(4-dimethylaminophenyl)-prop-2-en-1-one with nomenclature CMADMA, confirm its structure by nuclear magnetic resonance (NMR), and evaluate its antibacterial properties. METHODS: The synthesis methodology used was that of Claisen-Schmidt, and spectroscopic characterization was performed by NMR. For microbiological assays, the broth microdilution methodology was adopted in order to analyze the antibacterial potential of chalcones and to analyze their ability to act as a possible inhibitor of ß-lactamase and efflux pump resistance mechanisms, present in S. aureus strain K4100. RESULTS: The results obtained show that CMADMA does not show direct antibacterial activity, expressing a MIC of ≥1024 µg/mL, or on the enzymatic mechanism of ß-lactamase; however, when associated with ethidium bromide in efflux pump inhibition assays, CMADMA showed promising activity by reducing the MIC of the bromide from 64 to 32 µg/mL. CONCLUSION: We conclude that the chalcone synthesized in this study is a promising substance to combat bacterial resistance, possibly acting in the inhibition of the QacC efflux pump present in S. aureus strain K4100, as evidenced by the reduction in the MIC of ethidium bromide.


Asunto(s)
Chalcona , Chalconas , Staphylococcus aureus , Chalcona/farmacología , Chalcona/metabolismo , Chalconas/farmacología , Etidio/metabolismo , Etidio/farmacología , beta-Lactamasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
15.
Eur J Pharm Sci ; 192: 106660, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38052256

RESUMEN

A series of novel prenylated chalcone derivatives with broad spectrum anticancer potential were designed and synthesized. Some of the synthesized target compounds showed potent anti-proliferative activities toward LNCaP (prostate cancer cell line), K562 (human leukemia cells), A549 (human lung carcinoma cell line) and HeLa (cervical cancer cell line) cell lines. Among of the active compounds, (E)-1-(4-(2-(diethylamino)ethoxy)-2-hydroxy-6-methoxy-3-(3-methylbut-2-en-1-yl)phenyl)-3-(pyridin-3-yl)prop-2-en-1-one (C36) was directly interacted with protein kinase B (PKB), also known as AKT, significantly inhibited the pPI3K, pAKT(Ser473) protein levels to repress the growth of cancer cells by inducing apoptosis, arresting cell cycle. Our studies provide support for prenylated chalcone derivatives potential applications in cancer treatment as a potential AKT inhibitor.


Asunto(s)
Antineoplásicos , Chalcona , Chalconas , Humanos , Chalconas/farmacología , Proteínas Proto-Oncogénicas c-akt/farmacología , Proliferación Celular , Chalcona/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Apoptosis , Relación Estructura-Actividad
16.
Arch Pharm (Weinheim) ; 357(3): e2300440, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38048546

RESUMEN

Leishmaniasis is an emerging tropical infectious disease caused by a protozoan parasite of the genus Leishmania. In this work, the molecular hybridization between a trimethoxy chalcone and a sulfonamide group was used to generate a series of sulfonamide-chalcones. A series of eight sulfonamide-chalcone hybrids were made with good yields (up to 95%). These sulfonamide-chalcones were tested against promastigotes of Leishmania amazonensis and cytotoxicity against mouse macrophages, which showed good antileishmanial activity with IC50 = 1.72-3.19 µM. Three of them (10c, 10g, and 10h) were also highly active against intracellular amastigotes and had a good selectivity index (SI > 9). Thus, those three compounds were docked in the cytosolic tryparedoxin peroxidase (cTXNPx) enzyme of the parasite, and molecular dynamics simulations were carried out. This enzyme was selected as a target protein for the sulfonamide-chalcones due to the fact of the anterior report, which identified a strong and stable interaction between the chalcone NAT22 (6) and the cTXNPx. In addition, a prediction of the drug-likeness, and the pharmacokinetic profile of all compounds were made, demonstrating a good profile of those chalcones.


Asunto(s)
Antiprotozoarios , Chalcona , Chalconas , Animales , Ratones , Chalconas/farmacología , Chalcona/farmacología , Relación Estructura-Actividad , Antiprotozoarios/farmacología , Sulfanilamida , Sulfonamidas/farmacología
17.
Mol Neurobiol ; 61(4): 1873-1891, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37801205

RESUMEN

Multiple genetic, environmental, and immunological variables cause neuropsychiatric disorders (NPDs). The induced inflammatory immune response is also connected to the severity and treatment outcomes of various NPDs. These reactions also significantly impact numerous brain functions such as GABAergic signaling and neurotransmitter synthesis through inflammatory cytokines and chemokines. Chalcones (1,3-diaryl-2-propen-1-ones) and their heterocyclic counterparts are flavonoids with various biological characteristics including anti-inflammatory activity. Several pure chalcones have been clinically authorized or studied in humans. Chalcones are favored for their diagnostic and therapeutic efficacy in neuroinflammation due to their tiny molecular size, easy manufacturing, and flexibility for changes to adjust lipophilicity ideal for BBB penetrability. These compounds reached an acceptable plasma concentration and were well-tolerated in clinical testing. As a result, they are attracting increasing attention from scientists. However, chalcones' therapeutic potential remains largely untapped. This paper is aimed at highlighting the causes of neuroinflammation, more potent chalcone congeners, their mechanisms of action, and relevant structure-activity relationships.


Asunto(s)
Chalcona , Chalconas , Humanos , Chalcona/farmacología , Chalconas/farmacología , Enfermedades Neuroinflamatorias , Relación Estructura-Actividad , Flavonoides/farmacología
18.
Arch Pharm (Weinheim) ; 357(3): e2300320, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38117940

RESUMEN

Certain sulfathiazole-triazolo chalcone hybrids were identified as anticancer agents with dual vascular endothelial growth factor receptor-2 (VEGFR-2)/epidermal growth factor receptor (EGFR) kinase inhibitory effect. All of the compounds were evaluated for their cytotoxic activity against the MCF-7 and HepG-2 tumor cell lines. Compounds 11g, 11h, and 11j exhibited the most potent antiproliferative activity against both cancer cell lines, with good safety toward WI-38 normal cells. Thus, they were further assessed for VEGFR-2 inhibitory activity. They have suppressed VEGFR-2 enzyme at IC50 of 0.316, 0.076, and 0.189 µM, respectively in comparison to sorafenib (IC50 = 0.035 µM). EGFR enzyme inhibition was further screened for the most potent inhibitors, 11h and 11j, where they displayed enhanced potency with IC50 of 0.085 and 0.108 µM, respectively, compared to erlotinib (IC50 = 0.037 µM). Compounds 11h and 11j were additionally investigated for inhibition of comparable kinases, PDGFR-ß and B-Raf, where results assessed adequate selectivity of both compounds toward the VEGFR-2 and EGFR kinases. Furthermore, the wound healing assay of compound 11h manifested a percent wound closure of 65.18% in MCF-7 cells compared to doxorubicin (58.51%) and untreated cells (97.77%), proving its antiangiogenic activity. The cell cycle assay of MCF-7 cells treated with 11h demonstrated cell cycle arrest at the S phase. Moreover, compound 11h induced apoptosis with a 44-fold increase compared to that induced in the control MCF-7 cells. Molecular docking results of compounds 11h and 11j established their efficacies, and in silico studies showed convenient safety profiles with drug-likeness properties.


Asunto(s)
Chalcona , Chalconas , Humanos , Chalconas/farmacología , Simulación del Acoplamiento Molecular , Factor A de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Relación Estructura-Actividad , Receptores ErbB , Células MCF-7 , Chalcona/farmacología , Sulfatiazoles
19.
Molecules ; 28(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38067507

RESUMEN

Ovarian cancer ranks as the eighth most prevalent form of cancer in women across the globe and stands as the third most frequent gynecological cancer, following cervical and endometrial cancers. Given its resistance to standard chemotherapy and high recurrence rates, there is an urgent imperative to discover novel compounds with potential as chemotherapeutic agents for treating ovarian cancer. Chalcones exhibit a wide array of biological properties, with a particular focus on their anti-cancer activities. In this research, we documented the synthesis and in vitro study of a small library of chalcone derivatives designed for use against high-grade serous ovarian cancer (HGSOC) cell lines, specifically OVCAR-3, OVSAHO, and KURAMOCHI. Our findings revealed that three of these compounds exhibited cytotoxic and anti-proliferative effects against all the tested HGSOC cell lines, achieving IC50 concentrations lower than 25 µM. Further investigations disclosed that these chalcones prompted an increase in the subG1 phase cell cycle and induced apoptosis in OVCAR-3 cells. In summary, our study underscores the potential of chalcones as promising agents for the treatment of ovarian cancer.


Asunto(s)
Antineoplásicos , Chalcona , Chalconas , Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Chalcona/farmacología , Chalcona/uso terapéutico , Chalconas/farmacología , Chalconas/uso terapéutico , Apoptosis , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
20.
Molecules ; 28(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38067558

RESUMEN

Hydroxysafflor yellow A (HSYA) is derived from Carthamus tinctorius L. (Honghua in Chinese) and is used to treat cardiovascular and cerebrovascular disease. However, the mechanism by which HSYA treats ischemic stroke following atherosclerosis (ISFA) remains unclear. The targets and pathways of HSYA against ISFA were obtained using network analysis. A total of 3335 potential IFSA-related targets were predicted using the GenCards and Drugbank databases, and a total of 88 potential HSYA-related targets were predicted using the Swiss Target Prediction database. A total of 62 HSYA-related targets against IFSA were obtained. The network was composed of HSYA, 62 targets, and 20 pathways. The top 20 targets were constructed via the protein-protein interaction (PPI) network. Gene Ontology analysis revealed that the targets were involved in signal transduction, protein phosphorylation, the cytoplasm, the plasma membrane, the cytosol, zinc ion binding, ATP binding, protein kinase binding/activity, and enzyme binding. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that the pathways were associated with cancer, inflammatory mediator regulation of the transient receptor potential channels, and microRNA in cancer. Additionally, molecular docking indicated that HSYA mainly interacts with five targets, namely interleukin 1 beta (IL-1ß), signal transducer and activator of transcription 3 (STAT3), E1A-binding protein p300 (EP300), protein kinase C alpha (PRKCA), and inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB). In animal experiments, HSYA administration ameliorated the infarct size, neurological deficit score, histopathological changes, carotid intima-media thickness (IMT), and blood lipid level (total cholesterol and triglycerides). Immunochemistry and quantitative PCR showed that HSYA intervention downregulated the expression of STAT3, EP300, PRKCA, and IKBKB, and the enzyme-linked immunoassay showed reduced IL-1ß levels. The findings of this study provide a reference for the development of anti-ISFA drugs.


Asunto(s)
Aterosclerosis , Chalcona , Accidente Cerebrovascular Isquémico , Neoplasias , Animales , Quinasa I-kappa B , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Grosor Intima-Media Carotídeo , Simulación del Acoplamiento Molecular , Chalcona/farmacología , Chalcona/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Neoplasias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...